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Abstract. Structures of electromagnetic type on a vector bundle are introduced and studied. The
metric case is also defined and studied. The sets of compatible connections are determined and a
canonical connection is defined.

1. Introduction

Structures of electromagnetic type (em-structures) and structures of metric electromagnetic
type (mem-structures) on a manifold were progressively introduced in [7, 9, 11] (see also [6])
and studied in detail in [5, 7, 8, 13, 14]. In the present paper we define similar structures for the
case of a vector bundleξ = (E, π,M), and relate them to product, complex, para-Hermitian,
Hermitian, para-K̈ahler or indefinite K̈ahler, structures. (In the following, by a pseudo-
Riemannian metric we shall understand a metric of any signature, and by an indefinite (metric)
structure a structure including a pseudo-Riemannian metric.) Then, we determine the set of
connections onξ compatible with those structures and we introduce a canonical connection.
Considering an almost-para-Hermitian (respectively, indefinite Hermitian) structure on the
base manifoldM and an indefinite Hermitian (respectively, para-Hermitian) structure of the
bundleξ , we prove that the corresponding diagonal lift of these structures, with respect to a
connection onξ , are mem-structures on the total spaceE. Finally, some properties of those
mem-structures are established.

We recall the physical origin of the topic [9, 11]. LetM4 be a spacetime of general
relativity, with gravitational tensorg of signature−+++. LetF be the electromagnetic field
of type (0, 2), which is skewsymmetric, that is a 2-form. SettingF(X, Y ) = g(JX, Y ), the
tensor fieldJ thus defined is the electromagnetic tensor field of type(1, 1) associated toF .
We haveg(JX, Y ) + g(X, JY ) = 0. The characteristic equation ofJ is det(J − λI) = 0,
which is satisfied byJ , and we have

J 4 + 2kJ 2 + lI = 0 k = − 1
4 traceJ 2 l = detJ.

If x ∈ M4, it is said thatJx is of first, second or third class atx if, respectively,

lx 6= 0 lx = 0 kx 6= 0 lx = 0 kx = 0.
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It is said thatJ is of first, second or third class if it is of such a class at everyx. The
characteristic polynomial of the second class isJ 2(J 2 + 2k), but the minimal polynomial is
J (J 2 + 2k), so that the conditionJ (J 2 + 2k) = 0 characterizes the second class. The field of
an electromagnetic plane wave is of third class. The field of a moving electron is of second
class. More complicated fields belong to the first class. The equation one obtains from the
minimal polynomial in the first class is

(J 2 − f 2)(J 2 + h2) = 0 (1.1)

with f, h nowhere-vanishingC∞ functions onM4. Such a tensor fieldJ on a general manifold
M determines aG-structure onM.

To handle the nonconstant local cross section situation corresponding to (1.1), one can use
the relationships amongG-structures, related sections of an associated bundle and functions
of a certain kind onM, as follows: let(P, πP ,M,H) be a principal bundle with groupH ,
H × W → W a left action ofH on a manifoldW , and(E = P ×H W,πE,M,W) the
associated bundle. AJ -subsetS of W with corresponding groupG, a subgroup ofH , is
defined by the conditions: (a)S ⊂ fixpoint set ofG, (b) h ∈ H , h(S) ∩ S 6= ∅ ⇒ h ∈ G.
For instance, points areJ -subsets withG the corresponding isotropy group. A cross section
K of πE is aJ -section if it can be locally represented as the ‘product’ of a cross sectionσ of
πP and aS-valued functionK̃, so that

Kx = σx · K̃x = equivalence class of(σx, K̃x) in E.

ThenK̃ is globally defined, and theσ generate a principal subbundle ofP. K is a constant
J -section if and only ifK̃ is constant. Different sections can generate the same subbundle,
and in fact, every principal subbundle can be generated by a constantJ -section.

Now, letP be the principal bundle of frames overM, so thatH = GL(n,R), and letW be
a real vector space. IfJ ∈ W is given with the conditions stated above, aJ -section generates
a J -structure with groupG, which is aG-structure. The tensorK has in principlevariable
componentsin adapted frames. This is a slight generalization with respect to the usually
consideredG-structures, given by tensors with constant components, which here correspond
to constantJ -sections. Since everyJ -structure is generated by some constantJ -section,
this generalization is useless for the study of theJ -structure itself; but if the emphasis shifts
to the study of variableJ -sections, the results are significant, especially with respect to the
parallelizability of the tensors.

In the particular case of a(1, 1) tensor fieldJ satisfying(J 2 − f 2)(J 2 + h2) = 0, with
characteristic polynomial(x−p)r1(x−p)r2(x2+q2)s , r1, r2, s > 1, r1+r2+2s = n = dimM,
theJ -subset consists of matrices of the form

pIr1
−pIr2

−qIs
qIs


and the structural group isG = GL(r1,R) × GL(r2,R) × GL(s,C). It is proved [7] that
theG-structure defined byJ above is also defined by a tensor field, say againJ , satisfying
(J 2 − 1)(J 2 + 1) = 0, that is, the relationJ 4 = 1 considered in the present paper.

Notice thattheG-structure is exactly the same, not an associated or equivalent one. In
the four-dimensional case the group reduces toG = GL(1,R)×GL(1,R)×GL(1,C). It is
also proved [7] that there exists an adapted Riemannian metric so that the group can be reduced
toG = O(r1)×O(r2)× U(s), and in the four-dimensional case toZ2 × Z2 × U(1), that is,
essentially to the unitary groupU(1).
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2. Structures of electromagnetic type on a vector bundle

Let ξ = (E, π,M) be aC∞ vector bundle with total spaceE and projection mapπ over a
connected paracompact base manifoldM. The rank ofE is the (common) dimension of the
fibres. LetC∞(M) denote the ring of real functions,T pq (M) theC∞(M)-module of(p, q)-
tensor fields, andT (M) theC∞(M)-tensor algebra ofM. We, respectively, denote byT pq (ξ)
andT (ξ) theC∞(M)-module of tensor fields of type(p, q) and theC∞(M)-tensor algebra
of the bundleξ .

We recall that an almost-product (respectively, almost-complex) structure on a manifold
M is defined by a tensor fieldJ of type(1, 1) satisfyingJ 2 = I (respectively,J 2 = −I ). An
almost-para-Hermitian (respectively, indefinite almost-Hermitian) structure onM is defined
by a pair(J, g), given by an almost-product (respectively, almost-complex) structureJ and
a pseudo-Riemannian metric compatible withJ in the sense thatg(JX, Y ) + g(X, JY ) =
0, X, Y ∈ X(M); that is, as an anti-isometry (respectively, isometry). A para-Kähler
(respectively, indefinite K̈ahler) manifold is a manifoldM endowed with an almost-para-
Hermitian (respectively, indefinite almost-Hermitian) structure such that the Levi-Civita
connection ofg parallelizesJ .

Definition 2.1. A structure of electromagnetic type onξ = (E, π,M) is anM-endomorphism
J of ξ satisfying

J 4 = I
with characteristic polynomial(x−1)r1(x +1)r2(x2 +1)s , wherer1, r2, s are constants greater
than or equal to1 such thatr1 + r2 + 2s = rankE.

SettingP = J 2, we haveP 2 = I , soP is a product structure onξ , admittingJ as a
‘square root’. Conversely, ifP is a product structure admitting a ‘square root’J , thenJ is an
em-structure onξ . Denoting byξ1 andξ2, respectively, the +1 and−1 eigen-subbundles ofP ,
it is easy to see thatξ1 andξ2 are invariant byJ and thatJ1 = J |ξ1 defines a product structure
of ξ1 andJ2 = J |ξ2 a complex structure ofξ2. So, one has

ξ = ξ1⊕ ξ2 J = J1⊕ J2. (2.1)

Conversely, ifξ1 andξ2 are two supplementary subbundles ofξ , J1 is a product structure of
ξ1, andJ2 a complex structure ofξ2, thenJ = J1 ⊕ J2 is an em-structure onξ . Denoting by
P1 andP2 the projections ofξ on ξ1 andξ2, respectively, we obtain

P = P1− P2 J = J1 ◦ P1 + J2 ◦ P2.

Summing up we have

Proposition 2.1. An em-structure on the vector bundleξ = (E, π,M) can be defined by each
one of the following conditions:

(a) AnM-endomorphismJ of ξ satisfyingJ 4 = I .
(b) A product structureP of ξ admitting a ‘square root’J .
(c) Two supplementary subbundlesξ1 and ξ2 of ξ , respectively, endowed with a product

structure and a complex structure.

Remark 2.1. A product structureP which admits a ‘square root’ is a particular one because
rankξ2 must be even.
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Definition 2.2. A structure of metric electromagnetic type (mem-structure) on the vector
bundleξ is a pair (J, g), whereJ is an em-structure andg a pseudo-Riemannian metric
on ξ satisfying the compability condition

g(JX, Y ) + g(X, JY ) = 0 X, Y ∈ ξ. (2.2)

Denoting byδJ the derivation defined byJ in the tensor algebraT (ξ), the relation (2.2) can
be written as

δJ g = 0

from which it follows thatg(PX,PY ) = g(X, Y ), X, Y ∈ X(M). Therefore, the pair(P, g)
is a pseudo-Riemannian product structure ofξ and so the subbundlesξ1 andξ2 are mutually
orthogonal with respect tog. Denoting, respectively, byg1 andg2 the restrictions ofg to ξ1

andξ2, from (2.2) we obtain

δJ1g1 = 0 δJ2g2 = 0 (2.3)

which may be written as

g1(J1X, J1X) = −g1(X, Y ) g2(J2X, J2Y ) = g2(X, Y ) X, Y ∈ X(ξ). (2.4)

Hence(J1, g1) is a para-Hermitian structure ofξ1 and (J2, g2) is an indefinite Hermitian
structure ofξ2. Conversely, ifξ1 andξ2 are two supplementary subbundles ofξ such thatξ1 is
endowed with a para-Hermitian structure(J1, g1) andξ2 with an indefinite Hermitian structure
(J2, g2), then consideringJ as given by (2.1) and setting

g = g1⊕ g2

one obtains a mem-structure onξ . So we have

Proposition 2.2. A mem-structure(J, g) on ξ is equivalent to a pair of supplementary
subbundlesξ1 and ξ2, respectively, endowed with a para-Hermitian structure(J1, g1) and
an indefinite Hermitian structure(J2, g2).

Remark 2.2. If (J, g) is a mem-structure onξ , then we have:rankξ1 and rankξ2 are even;
traceJ1 = traceJ2 = 0; signg1 = 0.

Setting for a mem-structure(J, g) on ξ :

�(X, Y ) = g(JX, Y ) �i(X, Y ) = gi(JiX, Y ) i = 1, 2

it follows that�,�1 and�2 are 2-forms, which determine almost-symplectic structures ofξ ,
ξ1 andξ2, so that

� = �1⊕�2.

These 2-forms satisfy

δJ� = 0 δJ1�1 = 0 δJ2�2 = 0. (2.5)

Remark 2.3. The meaning of conditions (2.2), (2.3) and (2.5) is the following: the groups of
automorphisms ofX(ξ1), X(ξ2) andX(ξ) given by

αt = I1 cosht + J1 sinht βt = I2 cost + J2 sint γt = αt ⊕ βt
t ∈ R, determine actions on the tensor algebrasT (ξ1), T (ξ2) andT (ξ), which, respectively,
preserve the structures(J1, g1, �1), (J2, g2, �2) and(J, g,�).
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3. Compatible connections

3.1. The general case

Definition 3.1. A connectionD on the vector bundleξ is said to be compatible with an em-
structureJ if

DJ = 0. (3.1)

From this it follows thatDP = 0, henceD preserves the subbundlesξ1 and ξ2, i.e. for
X ∈ X(M), Y1 ∈ X(ξ1), Y2 ∈ X(ξ2), one hasDXY1 ∈ X(ξ1),DXY2 ∈ X(ξ2). Setting then

D1
XY1 = DXY1 D2

XY2 = DXY2

X ∈ X(M) Y1 ∈ X(ξ1) Y2 ∈ X(ξ2)

we have thatD1 andD2 are, respectively, connections onξ1 andξ2, so that

DX = D1
X ◦ P1 +D2

X ◦ P2 D1
XJ1 = 0 D2

XJ2 = 0 X ∈ X(M). (3.2)

Conversely, ifD1 andD2 are, respectively, connections onξ1 andξ2, thenD given as in (3.2)
is a connection onξ satisfyingDP = 0. If D1 andD2 satisfy the respective conditions in
(3.2), thenD satisfies (3.1) too. Thus, it follows

Proposition 3.1. A connectionD on ξ is compatible with the em-structureJ if and only if
there exist two connectionsD1 on ξ1 andD2 on ξ2, respectively, compatible with the product
structureJ1 and the complex structureJ2, so that

D = D1 ◦ P1 +D2 ◦ P2. (3.3)

Consider now on the subbundlesξi of ξ , the operators8Ji and9Ji given by

(8JiD
i)X = 1

2(D
i
X + J−1

i ◦Di
X ◦ Ji) (9JiAi )X = 1

2(A
i
X + J−1

i ◦AiX ◦ Ji) (3.4)

whereX ∈ X(M),Di is a connection onξi , andAi ∈ 31(M)⊗ X(ξi)⊗31(ξi) (now and in
the following we takei = 1, 2). From [1, 13] and proposition 3.1 we obtain

Proposition 3.2. The set of connections onξ compatible with the em-structureJ is given by

DX = {(8J1D
◦1)X + (9J1A1)X} ◦ P1 + {(8J2D

◦2)X + (9J2A2)X} ◦ P2

whereX ∈ X(M) andD◦i is an arbitrary fixed connection onξi , Ai denotes any element of
31(M)⊗ X(ξi)⊗31(ξi), and8Ji ,9Ji are given by (3.4).

Definition 3.2. A connectionD onξ is said to be compatible with the mem-structure(J, g) if

DJ = 0 Dg = 0.

From which it follows: DP = 0; D = D1 ◦ P1 + D2 ◦ P2, whereDi are the restrictions
of D to ξ1 andξ2; DiJi = 0; andDigi = 0. Conversely, ifD1 andD2 are connections on
ξ1 andξ2, compatible with the para-Hermitian structure(J1, g1) and the indefinite Hermitian
structure(J2, g2), respectively, then the connectionD given by (3.3) is compatible with the
mem-structure(J, g) on ξ . So, we have

Proposition 3.3. A connectionD on ξ is compatible with the mem-structure(J, g) on ξ , if
and only if there are two connectionsD1 andD2 on the subbundlesξ1 and ξ2, respectively,
compatible with the para-Hermitian structure(J1, g1) and the indefinite Hermitian structure
(J2, g2), so thatD is given by (3.3).
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Then setting

(8giD
i)X = 1

2(D
i
X + g−1

i ◦Di
X ◦ gi) (9giAi )X = 1

2(A
i
X + g−1

i ◦AiX ◦ gi) (3.5)

we obtain from [1], proposition 3.3 and (2.4)

Proposition 3.4. The set of connections onξ compatible with the mem-structure(J, g) is given
by

DX =
{
((8g1 ◦8J1)D

◦1)X + ((9g1 ◦9J1)A1)X
} ◦ P1

+
{
((8g2 ◦8J2)D

◦2)X + ((9g2 ◦9J2)A2)X
} ◦ P2

whereD◦i is an arbitrary fixed connection onξi , Ai ∈ 31(M) ⊗ X(ξi) ⊗ 31(ξi), and8Ji ,
8gi ,9Ji ,9gi are given by (3.4) and (3.5).

3.2. The case of the tangent bundle

We now consider the case ofξ being the tangent bundle of the manifoldM, i.e. ξ =
(TM, π,M). In this case, for a mem-structure(J, g) on M, the pair(P, g) is a pseudo-
Riemannian almost-product structure onM, and(J1, g1), (J2, g2), are, respectively, a para-
Hermitian [4] and an indefinite Hermitian structure [10] onξ1 andξ2. If ∇ is a linear connection
on M, compatible withP , i.e. ∇P = 0, then its restrictions∇1 and∇2 to ξ1 and ξ2 are
connections on these subbundles. IfT is the torsion tensor of∇, we shall call thetorsion
tensorof ∇ i to the tensor fieldsT i given byT i = Pi ◦ T |ξi , or in more detail

T i(Xi, Yi) = ∇XiYi −∇YiXi − Pi [Xi, Yi ] Xi, Yi ∈ X(ξi).

We call tensors of nonholonomyof the distributionsξ1 and ξ2 to the tensor fields
S1 = P2 ◦ T |ξ1 andS2 = P1 ◦ T |ξ2, respectively. We obtain

S1(X1, Y1) = −P2[X1, Y1] S2(X2, Y2) = −P1[X2, Y2].

It follows

Proposition 3.5. The distributionξ1 (respectively,ξ2) is involutive if and only ifS1 = 0
(respectively,S2 = 0).

After some computations we obtain from [3, 10, 14].

Proposition 3.6. For a mem-structure(J, g) on a manifoldM, there exists a unique linear
connection∇ with torsion tensorT , satisfying the conditions

∇P = 0 T (PX, Y ) = T (X, PY ) (3.6)

∇ iXi Ji = 0 ∇ iXi gi = 0 T i(JiX, IiY ) = T i(IiX, JiY ). (3.7)

Definition 3.3. We shall call the canonical connection associated with the mem-structure
(J, g) on the manifoldM to the connection given by the conditions (3.6) and (3.7).

Remark 3.1. Notice that this connection differs slightly from that given in theorem 5.3 in [14].
For the canonical connection we obtain from (3.6):

∇1
X2
Y1 = P1[X2, Y1] ∇2

X1
Y2 = P2[X1, Y2].

Denoting byξ1
1 , ξ2

1 the eigen-subbundles ofJ1 corresponding toε = +1, ε = −1, byπ1
1 , π2

1
the projection maps ofξ1 on ξ1

1 , andξ2
1 and byXi1, Y i1 any elements ofX(ξ i1), we obtain from

the first equation in (3.7),

∇1
X2

1
Y 1

1 = π1
1P1[X2

1, Y
1
1 ] ∇1

X1
1
Y 2

1 = π2
1P1[X1

1, Y
2
1 ]

g1(∇1
X1

1
Y 1

1 , Z
2
1) = X1

1g1(Y
1
1 , Z

2
1)− g1([X

1
1, Z

2
1], Y 1

1 )

g1(∇1
X2

1
Y 2

1 , Z
1
1) = X2

1g1(Y
2
1 , Z

1
1)− g1([X

2
1, Z

1
1], Y 2

1 ).
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From the second equation in (3.7) above it results, exactly as in [14] (theorem 5.1), the
expression for∇2

X2
Y2.

ForJ andg we obtain

(∇X1J )Y1 = 0 (∇X2J )Y2 = 0 (∇X1J )Y2 = (∇2
X1
J2)Y2

(∇X2J )Y1 = (∇1
X1
J1)Y1 (∇X1g)(Y1, Z1) = 0 (∇X2g)(Y2, Z2) = 0

(∇X2g)(Y1, Z1) = (LX2g)(Y1, Z1) (∇X1g)(Y2, Z2) = (LX1g)(Y2, Z2)

whereL stands for the Lie derivative.

4. Structures of electromagnetic type on the total space of a vector bundle

Let ξ = (E, π,M) be a vector bundle and(xj ), (ya), (xj , ya), local coordinates in adapted
charts onM, ξ andE, respectively. We denote by(∂j ), (ea), (∂j , ∂a) the corresponding local
bases, where∂j = ∂/∂xj , ∂a = ∂/∂ya, j = 1, 2, . . . , m, a, b, c = 1, 2, . . . , n (see [2]).
Setting for eachz = (x, y) ∈ E, VzE = Kerπ∗z, we obtain thevertical distributionand thus
thevertical subbundleof T E, denoted byVE. LetC∞v = {f v = f ◦ π : f ∈ C∞(M)} be
the subring ofC∞(E) naturally isomorphic toC∞(M). Setting for eachµ ∈ 31(ξ), locally
given byµ(x) = µa(z) ea,

γ (µ)(z) = µa(x) ya
we obtain a class of functions onE enjoying the property that every vector fieldA ∈ X(E)

is uniquely determined by its values on those functions. The mappingγ may be extended to
tensor fieldsS ∈ T 1

1 (ξ) by

(γ S)(γ (µ)) = γ (µ ◦ S) µ ∈ 31(ξ).

If S(x) = Sab (x) ea ⊗ eb, thenγ S(z) = Sab (x) yb∂a, i.e.γ S is a vertical vector field onE.
Now, letD be a connection onξ andX ∈ X(M), u ∈ X(ξ). Setting

Xh(γµ) = γ (DXµ) uv(γµ) = µ(u) ◦ π µ ∈ 31(ξ)

we obtain two vector fieldsXh anduv onE, respectively, called thehorizontal lift of X and
thevertical lift of u. We have the useful formulae [2]

(fX)h = f vXh (f u)v = f vuv
[Xh, Y h] = [X, Y ]h − γRDXY [uv,wv] = 0[Xh, uv] = (DXu)

v

f ∈ C∞(M) X, Y ∈ X(M) u,w ∈ X(ξ).

Now, putting

Q(Xh) = Xh Q(uv) = −Xv X ∈ X(M) u ∈ X(ξ)

we obtain an almost-productQ structure onE whose +1 and−1 eigendistributions, are,
respectively, called thehorizontal distributionHE of the connectionD and thevertical
distributionVE of the bundle.

Forf ∈ T 1
1 (M), ϕ ∈ T 1

1 (ξ), g ∈ T2(M), ψ ∈ T2(ξ), we define thehorizontal lift or the
vertical lift f h, ϕv, gh, ψv, respectively, by

f h(Xh) = f (X)h f h(uv) = 0
ϕv(Xh) = 0 ϕv(uv) = ϕ(u)v
gh(Xh, Y h) = g(X, Y )v gh(Xh, uv) = gh(uv,Xh) = gh(uv, wv) = 0

ψv(Xh, Y h) = ψv(Xh, uv) = ψv(uv, Y h) = 0 ψv(uv, wv) = ψ(u,w)v

X, Y ∈ X(M) u,w ∈ X(ξ).

(4.1)
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We then define thediagonal liftsJ andG for the pairs(f, ϕ) and(g, ψ) by

J = f h + ϕv G = gh +ψv. (4.2)

From (4.1) and (4.2) we have

J n(Xh) = (f n(X))h J n(uv) = (ϕn(u))v n ∈ N∗.
SoJ 4 = I , that isJ is an em-structure onE, if and only iff 4 = I1 andϕ4 = I2, that is, either
f andϕ are both em-structures or one is an em-structure and the other is an almost-product
or almost-complex structure, or finallyf is an almost-product (respectively, almost-complex)
andϕ is a complex (respectively, product) structure onM andξ , respectively.In the following
we only consider the last case.

Hence, letJ be an em-structure on the total spaceE of ξ given by the diagonal lift in the
first equation in (4.2) of an almost-product (respectively, almost-complex) structuref on the
base manifoldM and a complex (respectively, product) structureϕ on the bundleξ , that is,
which satisfy

f 2 = εI1 ϕ2 = −εI2 ε = 1 (respectively, ε = −1)

with respect to a connectionD on ξ . For the almost-product structureP associated toJ , we
obtainP = εQ, that is,P coincides up to the sign with the almost-product structureQ above
associated toD.

Now, letG be the diagonal lift in the second equation in (4.2), with respect toD, for the
pair (g, ψ) of metrics onM andξ . From (4.2) we obtain

δJG = (δf g)h + (δϕψ)
v

and soδJG = 0 if and only if δf g = 0 andδϕψ = 0. It follows

Proposition 4.1. The pair(J,G) of diagonal lifts, with respect to a connectionD onξ , of an
almost-product (respectively, almost-complex) structuref onM and a complex (respectively,
product) structureϕ of ξ , and the nondegenerate metricsg on M andψ on ξ , is a mem-
structure on the total spaceE of ξ if and only if the pair(f, g) is an almost-para-Hermitian
(respectively, indefinite almost-Hermitian) structure onM. The pair(ϕ, ψ) is an indefinite
Hermitian (respectively, para-Hermitian) structure onξ .

Denoting byω andτ the 2-forms associated to the structures(f, g) onM and(ϕ, ψ) on
ξ , and by�1, �2, �, the 2-forms associated to the structures(f h, gh) onHE, (ϕv, ψv) on
VE and(J,G) onT E, we obtain

�1 = ωh �2 = τ v � = ωh ⊕ τ v.
From the hypotheses of proposition 4.1 it follows

δf g = 0 δf ω = 0 δϕψ = 0 δϕτ = 0 δJG = 0 δJ� = 0.

Remark 4.1. The groups of automorphisms ofX(M),X(ξ),X(E), given, respectively, for
ε = 1 andε = −1, by

αt = I1 cosht + f sinht βt = I2 cost + ϕ sint γt = αht ⊕ βht t ∈ R
αt = I1 cost + f sint βt = I2 cosht + ϕ sinht γt = αht ⊕ βht t ∈ R
determine on the tensor algebrasT (M), T (ξ) andT (E), actions which preserve the structures
(f, g, ω), (ϕ, ψ, τ) and(J,G,�).
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For two connections∇ onM andD onξ , we define thehorizontal lift∇h on the subbundle
HE and thevertical lift Dv on the subbundleVE (each one with respect to the connection
D), respectively, by

∇h
Xh
Y h = (∇XY )h ∇huvY h = 0 Dv

Xhw
v = (DXw)

v Dv
uvw

v = 0.

Putting them as

DAX = ∇hA HX +Dv
AVX A,X ∈ X(E)

whereH andV denote the horizontal and vertical projectors ofT E on HE andVE, we
obtain a linear connectionD onE, called thediagonal lift of the pair(∇,D) with respect to
the connectionD (see [2]), whose restrictions to the subbundlesξ1 = HE andξ2 = VE are
D1 = ∇h andD2 = Dv. The nonvanishing components of the torsion and curvature tensors
of D are given by

T (Xh, Y h) = T ∇(X, Y )h + γRDXY
RXhYhZh = (R∇XYZ)h RXhYhuv = (RDXYu)v

(4.3)

whereT ∇, R∇ andRD stand for the torsion tensor of∇ and the curvature tensors of∇ andD.
For the covariant derivatives, with respect toD, of the horizontal lift off andg, and the

vertical lift of ϕ andψ we obtain

DXhf h = (∇Xf )h Duvf h = 0 DXhgh = (∇Xg)h Duvgh = 0

DXhϕv = (DXϕ)
v Duvϕv = 0 DXhψv = (DXψ)

v Duvψv = 0.

So, for the diagonal liftsJ andG of the pairs(f, ϕ) and(g, ψ), it follows

DXhJ = (∇Xf )h + (DXϕ)
v DuvJ = 0

DXhG = (∇Xg)h + (DXψ)
v DuvG = 0.

(4.4)

Hence,DJ = 0 if and only if∇f = 0,Dϕ = 0; andDG = 0 if and only if∇g = 0,Dψ = 0.
From (4.3) and (4.4) it follows, forP = J 2, thatDP = 0 andT ◦P × I = T ◦ I ×P for any
connections∇ onM andD on ξ . After that we have

∇h
Xh
gh = (∇Xg)h Dv

uvϕ
v = 0 Dv

uvψ
v = 0

∇h
Xh
f h = (∇Xf )h T 1(f hX, I1Y ) = (T ∇(fX, I1Y ))h T 2(ϕvX, I2Y ) = 0

whereT 1 = H ◦ T |HE andT 2 = V ◦ T |VE . So we obtain

Proposition 4.2. The diagonal liftD onE, for the connections∇ onM andD on ξ , is the
canonical connection associated to the mem-structure(J,G) if and only if

∇f = 0 ∇g = 0 T ∇(fX, Y ) = T ∇(X, f Y )
i.e. the connection∇ is the canonical connection[2, 10] associated to the almost-para-
Hermitian (respectively, indefinite almost-Hermitian) structure(f, g) onM.

Also from (4.3) and (4.4) we obtainDG = 0 andT = 0 if and only if∇g = 0, T ∇ = 0,
RD = 0 andDψ = 0. Hence we have

Proposition 4.3. The diagonal liftD of the pair of connections(∇,D) coincides with the Levi-
Civita connection ofG if and only if∇ is the Levi-Civita connection ofg, D has vanishing
curvature andψ is covariant constant.
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For the Nijenhuis tensor ofJ ,

NJ (A,B) = [JA, JB] + J 2[A,B] − J [JA,B] − J [A, JB] A,B ∈ X(E)

we obtain
NJ (X

h, Y h) = Nf (X, Y )h + γ
(
εRDXY − RDfXfY + ϕ ◦ (RDfXY +RDXfY )

)
NJ (X

h, uv) = (DfXϕu− εDXu− ϕ ◦ (DfXu +DXϕu)
)v

NJ (u
v, wv) = 0.

(4.5)

It follows

Proposition 4.4. The mem-structureJ is integrable (i.e.NJ = 0, see[8]) if and only iff is
a product (respectively, a complex) structure inM, the connectionD has vanishing curvature
and the complex (respectively, product) structureϕ on ξ is covariant constant.

For the exterior differential of the 2-form� associated to the mem-structure(J,G) we
obtain

d�(Xh, Y h, Zh) = dω(X, Y,Z)v 3d�(Xh, Y h,wv) = −γ (iwτ ◦ RDXY )
3d�(Xh, uv, wv) = DXτ(u,w)

v d�(uv, vv, wv) = 0.

Hence

Proposition 4.5. The almost-symplectic structure� associated to the mem-structure(J,G)
on E is integrable (i.e.d� = 0) if and only if the structure(f, g) is almost-para-K̈ahler
(respectively, indefinite almost Kähler), the connectionD has vanishing curvature, and the
2-form τ on ξ is covariant constant.

Finally, we obtain

Proposition 4.6. For the mem-structure(J,G) on E, the structuresJ and � are
simultaneously integrable if and only if the structure(f, g) is a para-K̈ahler (respectively,
indefinite K̈ahler) structure onM,D has vanishing curvature and the pair(ϕ, ψ) is covariant
constant.
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